资源类型

期刊论文 525

年份

2023 39

2022 33

2021 30

2020 37

2019 22

2018 31

2017 29

2016 17

2015 16

2014 16

2013 25

2012 22

2011 22

2010 18

2009 20

2008 33

2007 35

2006 21

2005 14

2004 5

展开 ︾

关键词

动力特性 6

动态规划 4

动力响应 3

动力学 3

力学性能 2

动力气垫 2

动态 2

动态性能 2

动态模拟 2

动态管理 2

可视化仿真 2

地震预测 2

多输入多输出 2

扬矿管 2

模态 2

海上风电场 2

深海采矿 2

6G;广域覆盖信令小区;多维资源分配;深度Q网络(DQN) 1

A*算法 1

展开 ︾

检索范围:

排序: 展示方式:

Development and testing of a wireless smart toolholder with multi-sensor fusion

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0774-y

摘要: The smart toolholder is the core component in the development of intelligent and precise manufacturing. It enables in situ monitoring of cutting data and machining accuracy evolution and has become a focal point in academic research and industrial applications. However, current table and rotational dynamometers for milling force, vibration, and temperature testing suffer from cumbersome installation and provide only a single acquisition signal, which limits their use in laboratory settings. In this study, we propose a wireless smart toolholder with multi-sensor fusion for simultaneous sensing of milling force, vibration, and temperature signals. We select force, vibration, and temperature sensors suitable for smart toolholder fusion to adapt to the cutting environment. Thereafter, structural design, circular runout, dynamic balancing, static stiffness, and dynamic inherent frequency tests are conducted to assess its dynamic and static performance. Finally, the smart toolholder is tested for accuracy and repeatability in terms of force, vibration, and temperature. Experimental results demonstrate that the smart toolholder accurately captures machining data with a relative deviation of less than 1.5% compared with existing force gauges and provides high repeatability of milling temperature and vibration signals. Therefore, it is a smart solution for machining condition monitoring.

关键词: wireless smart toolholder     multi-sensor fusion     circular runout     dynamic balancing     static stiffness     dynamic inherent frequency    

Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint

Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 745-762 doi: 10.1007/s11705-018-1779-7

摘要:

Process plants should be designed to be economically viable and environmentally friendly, while also being operable and maintainable during process implementation. The safety of processes is among the most important considerations in obtaining results that are more acceptably realistic, as it is linked to the availability and reliability of the process. Inherent safety can effectively be enhanced in the early stages of the design, when the main decisions on process design are made. The aim of this study is to enhance and select the appropriate risk assessment method and to incorporate it into process synthesis, using a mathematical programming approach. A mixed-integer, nonlinear programming (MINLP) model was used for the synthesis of a methanol production process, considering risk assessment during the synthesis. Risk assessment is performed simultaneously with the MINLP process synthesis, where the risk is determined either for the whole process as overall risk, or on a per unit-of-a-product basis. For the latter, a new measurement is proposed: the inherent risk footprint. The results of a case study led to two main conclusions: (i) Significantly safer designs can be obtained at negligible economic expense, and (ii) at higher production capacities, a lower inherent risk footprint can be achieved. The results also indicate that designs obtained using this method can have significantly increased inherent safety, while remaining economically viable.

关键词: inherent safety     process design     simultaneous risk assessment     risk footprint     methanol process    

Separation and extraction of bridge dynamic strain data

Baijian WU, Zhaoxia LI, Ying WANG, T. H. T. CHAN,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 395-400 doi: 10.1007/s11709-009-0049-7

摘要: Through comparing the measured data of dynamic strains due to loading and temperature by the stain gauge and temperature sensor at the same location, the information in the strain data was divided into three parts in the frequency domain by using the defined index named power spectral density (PSD)-ratio index. The three parts are dominated respectively by temperature varying, stresses, and noises and thus can be distinguished from the determined the separatrix frequencies. Also, a simple algorithm was developed to separate the three types of information and to extract the strain caused mainly by structural stresses. As an application of the proposed method, the effect of strain deformation and noises on the fatigue assessment was investigated based on the separated data. The results show that, the determined values of separatrix frequencies are valuable for the monitoring data from other bridges. The algorithm is a multiresolution and hierarchical method, which has been validated as a simple and effective method for data analyses, and is suitable for the compression and preprocessing of the great amount monitoring data and easy to be integrated into the structural health monitoring (SHM) soft system. The strain due to temperature varying attributes a little to the errors of fatigue assessment; however, the noises or random disturbance existed in the monitoring data have much responsibility for the errors, and the main reason is that the random disturbance shifts the real strain/stress amplitude picked up by real structural stress or strain.

关键词: dynamic     valuable     separatrix     strain/stress amplitude     frequency    

Identification of dynamic stiffness matrix of bearing joint region

Feng HU, Bo WU, Youmin HU, Tielin SHI

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 289-299 doi: 10.1007/s11465-009-0064-3

摘要: The paper proposes an identification method of the dynamic stiffness matrix of a bearing joint region on the basis of theoretical analysis and experiments. The author deduces an identification model of the dynamic stiffness matrix from the synthetic substructure method. The dynamic stiffness matrix of the bearing joint region can be identified by measuring the matrix of frequency response function (FRFs) of the substructure (axle) and whole structure (assembly of the axle, bearing, and bearing housing) in different positions. Considering difficulty in measuring angular displacement, applying moment, and directly measuring relevant FRFs of rotational degree of freedom, the author employs an accurately calibrated finite element model of the unconstrained structure for indirect estimation. With experiments and simulation analysis, FRFs related with translational degree of freedom, which is estimated through the finite element model, agrees with experimental results, and there is very high reliability in the identified dynamic stiffness matrix of the bearing joint region.

关键词: frequency response function (FRFs)     dynamic stiffness     finite element     synthetic substructure method     joint region    

Effects of elastic support on the dynamic behaviors of the wind turbine drive train

Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 348-356 doi: 10.1007/s11465-017-0420-7

摘要:

The reliability and service life of wind turbines are influenced by the complex loading applied on the hub, especially amidst a poor external wind environment. A three-point elastic support, which includes the main bearing and two torque arms, was considered in this study. Based on the flexibilities of the planet carrier and the housing, a coupled dynamic model was developed for a wind turbine drive train. Then, the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed. Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train. Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train. A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing, whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing. The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.

关键词: wind turbine drive train     elastic support     dynamic behavior     frequency response function    

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2012年 第6卷 第2期   页码 184-192 doi: 10.1007/s11708-012-0185-y

摘要: Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.

关键词: doubly fed induction generator (DFIG)     load frequency control     inertial control     wind energy conversion system (WECS)    

Genome-wide association studies: inherent limitations and future challenges

null

《医学前沿(英文)》 2012年 第6卷 第4期   页码 444-450 doi: 10.1007/s11684-012-0225-3

摘要:

Genome-wide association studies (GWAS) have achieved great success in identifying genetic variants related to complex human diseases such as cancer and have provided valuable insights into their genetic architecture. Recently, GWAS is quite the fashion in China. However, there are issues related to its nature. Enormous work needs to be done in the post-GWAS era. Deep sequencing followed by functional studies will be needed to elucidate the underpinning biological mechanisms and further translate GWAS findings into medical practice. Along with pharmacogenomics, the success of GWAS in identifying genetic risk factors and genetic differences in drug response has been gradually enabling personalized medicine. In this article, we used hepatocellular carcinoma (HCC) as an example to demonstrate some of the inherent limitations and summarized future challenges of GWAS.

关键词: genome-wide association studies (GWAS)     genetic variant     cancer     limitation     challenge    

Dynamics of structural systems with various frequency-dependent damping models

Li LI,Yujin HU,Weiming DENG,Lei LÜ,Zhe DING

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 48-63 doi: 10.1007/s11465-015-0330-5

摘要:

The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damping model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.

关键词: damping     viscoelasticity     dynamic analysis     mode superposition method     Fourier transform method    

液体静压支承动态性能新表达式探索与实验验证

孟心斋,杨建玺,孟昭焱

《中国工程科学》 2003年 第5卷 第3期   页码 62-66

摘要:

液体静压支承具有很多优良性能:高运动精度,低摩擦功耗,小轴心偏移,大承载能力,强抗振性能与长使用寿命等,但这些优良的静态性能必须在上佳的动态性能保证下才能充分显示出来,因此,液体静压支承静态性能保证机床运动与加工精度,而动态性能则保证设备的安全与工作条件。文章根据力平衡与流量连续条件建立支承系统传递函数,导出支承系统动态性能新表达式即稳定性判别、抗瞬态干扰能力、固有频率与在稳态周期干扰力作用下产生的动刚度与最大振幅。通过试验台实验证实,液体静压支承动态性能新表达式计算结果可靠而且物理概念清晰,公式简单,故可用于实际。

关键词: 动态性能     传递函数     动刚度     谐振     频率     液体静压支承    

Energy-aware scheduling with reconstruction and frequency equalization on heterogeneous systems

Yong-xing LIU,Ken-li LI,Zhuo TANG,Ke-qin LI

《信息与电子工程前沿(英文)》 2015年 第16卷 第7期   页码 519-531 doi: 10.1631/FITEE.1400399

摘要: With the increasing energy consumption of computing systems and the growing advocacy for green computing, energy efficiency has become one of the critical challenges in high-performance heterogeneous computing systems. Energy consumption can be reduced by not only hardware design but also software design. In this paper, we propose an energy-aware scheduling algorithm with equalized frequency, called EASEF, for parallel applications on heterogeneous computing systems. The EASEF approach aims to minimize the finish time and overall energy consumption. First, EASEF extracts the set of paths from an application. Then, it reconstructs the application based on the extracted set of paths to achieve a reasonable schedule. Finally, it adopts a progressive way to equalize the frequency of tasks to reduce the total energy consumption of systems. Randomly generated applications and two real-world applications are examined in our experiments. Experimental results show that the EASEF algorithm outperforms two existing algorithms in terms of makespan and energy consumption.

关键词: Directed acyclic graph     Dynamic voltage scaling     Energy aware     Heterogeneous systems     Task scheduling    

基于频率响应函数的动力学模型修正方法研究

朱凼凼,冯咬齐,向树红

《中国工程科学》 2005年 第7卷 第8期   页码 89-94

摘要:

概述了国内外动力学模型修正技术的研究状况,研究了近些年发展起来的基于频响函数的动力学模型修正方法;利用航天器振动试验测量所得的频响函数,从理论上介绍了频响函数残差法、设计参数型频响函数法和摄动型频响函数法三种基于频响函数的动力学模型修正方法,为动力学模型修正技术的发展提供参考。

关键词: 航天器     动力学     频响函数     模型修正    

Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers

ZHANG Ruihua, CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 433-438 doi: 10.1007/s11465-007-0074-y

摘要: This paper develops a 30 mm × 30 mm × 50 mm spherical micro actuator driven by piezoelectric ceramic stacks (PZT), and analyzes its dynamic performances. First, the space coordinate relationship of the spherical micro actuator and a dynamic model are set up. Second, The Runge-Kutta arithmetic is used to calculate the dynamical parameters of the micro actuator; the SIMULINK module of MATLAB is used to build the dynamical simulating model and then simulate it. Third, an experimental sample of the spherical micro actuator is developed, a micromanipulator is integrated with a micro-gripper based on the sample spherical micro actuator, and the experimental research on the micro assembly is conducted between a micro shaft of 180 μm and a micro spindle sleeve of 200 μm. Finally, the characteristics of the spherical micro actuator influenced by the mass of the metal sphere of the micro actuator, driving signal frequency, friction coefficient of the contact surface between the metal sphere and the friction block of the micro driving unit are analyzed. The experimental results indicate that the rotation resolution of the micro actuator reaches 0.000 1°, the rotation positioning precision reaches 0.000 5°, and the maximum working frequency is about 1200 Hz. The experimental results validate the back rotation vibration model of the spherical micro actuator. The micromanipulator integrated by the spherical micro actuator can meet the requirements of precise micro operation and assembly for micro electro mechanical systems (MEMS) or other microelements in micro degree fields.

关键词: spherical     micro-gripper     friction coefficient     dynamic     frequency    

基于本质安全的工业事故风险管理方法研究

吴宗之

《中国工程科学》 2007年 第9卷 第5期   页码 46-49

摘要:

从风险管理角度对生产过程中的安全防护方法进行了分类和论述,提出了基于本质安全思想的工业 事故综合风险管理方法与程序,其核心内容是在常规的危险辨识和风险评价基础上,优先应用本质安全原理来 减少、消除危险,综合采用无源安全措施、有源安全措施或多层安全防护措施与功能安全标准,将风险降低至 可接受水平;提出了本质安全应与清洁生产、绿色化学、循环经济同等纳入优先发展的技术和政策等建议。

关键词: 本质安全     风险管理     事故预防     安全设计    

An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural

P. ZAKIAN

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 470-479 doi: 10.1007/s11709-017-0440-8

摘要: Since a lot of engineering problems are along with uncertain parameters, stochastic methods are of great importance for incorporating random nature of a system property or random nature of a system input. In this study, the stochastic dynamic analysis of soil mass is performed by finite element method in the frequency domain. Two methods are used for stochastic analysis of soil media which are spectral decomposition and Monte Carlo methods. Shear modulus of soil is considered as a random field and the seismic excitation is also imposed as a random process. In this research, artificial neural network is proposed and added to Monte Carlo method for sake of reducing computational effort of the random analysis. Then, the effects of the proposed artificial neural network are illustrated on decreasing computational time of Monte Carlo simulations in comparison with standard Monte Carlo and spectral decomposition methods. Numerical verifications are provided to indicate capabilities, accuracy and efficiency of the proposed strategy compared to the other techniques.

关键词: stochastic analysis     random seismic excitation     finite element method     artificial neural network     frequency domain analysis     Monte Carlo simulation    

Dynamic characteristics of a magnetorheological pin joint for civil structures

Yancheng LI,Jianchun LI

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 15-33 doi: 10.1007/s11465-014-0283-0

摘要:

Magnetorheological (MR) pin joint is a novel device in which its joint moment resistance can be controlled in real-time by altering the applied magnetic field. The smart pin joint is intended to be used as a controllable connector between the columns and beams of a civil structure to instantaneously shift the structural natural frequencies in order to avoid resonance and therefore to reduce unwanted vibrations and hence prevent structural damage. As an intrinsically nonlinear device, modelling of this MR fluid based device is a challenging task and makes the design of a suitable control algorithm a cumbersome situation. Aimed at its application in civil structure, the main purpose of this paper is to test and characterise the hysteretic behaviour of MR pin joint. A test scheme is designed to obtain the dynamic performance of MR pin joint in the dominant earthquake frequency range. Some unique phenomena different from those of MR damper are observed through the experimental testing. A computationally-efficient model is proposed by introducing a hyperbolic element to accurately reproduce its dynamic behaviour and to further facilitate the design of a suitable control algorithm. Comprehensive investigations on the model accuracy and dependences of the proposed model on loading condition (frequency and amplitude) and input current level are reported in the last section of this paper.

关键词: Magnetorheological pin joint     hyperbolic hysteresis model experimental testing frequency dependence    

标题 作者 时间 类型 操作

Development and testing of a wireless smart toolholder with multi-sensor fusion

期刊论文

Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint

Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja

期刊论文

Separation and extraction of bridge dynamic strain data

Baijian WU, Zhaoxia LI, Ying WANG, T. H. T. CHAN,

期刊论文

Identification of dynamic stiffness matrix of bearing joint region

Feng HU, Bo WU, Youmin HU, Tielin SHI

期刊论文

Effects of elastic support on the dynamic behaviors of the wind turbine drive train

Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN

期刊论文

Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Genome-wide association studies: inherent limitations and future challenges

null

期刊论文

Dynamics of structural systems with various frequency-dependent damping models

Li LI,Yujin HU,Weiming DENG,Lei LÜ,Zhe DING

期刊论文

液体静压支承动态性能新表达式探索与实验验证

孟心斋,杨建玺,孟昭焱

期刊论文

Energy-aware scheduling with reconstruction and frequency equalization on heterogeneous systems

Yong-xing LIU,Ken-li LI,Zhuo TANG,Ke-qin LI

期刊论文

基于频率响应函数的动力学模型修正方法研究

朱凼凼,冯咬齐,向树红

期刊论文

Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers

ZHANG Ruihua, CHEN Haichu

期刊论文

基于本质安全的工业事故风险管理方法研究

吴宗之

期刊论文

An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural

P. ZAKIAN

期刊论文

Dynamic characteristics of a magnetorheological pin joint for civil structures

Yancheng LI,Jianchun LI

期刊论文